How to find Elliot, Rothenberg, and Stock Unit Root Test
> gnp <- na.omit(nporg[, "gnp.r"])
> ers.gnp <- ur.ers(gnp, type="DF-GLS", model="const", lag.max=4)
> summary(ers.gnp)
###############################################
# Elliot, Rothenberg and Stock Unit Root Test #
###############################################
Test of type DF-GLS
detrending of series with intercept
Call:
lm(formula = dfgls.form, data = data.dfgls)
Residuals:
Min 1Q Median 3Q Max
-39.767 -6.011 4.775 14.896 31.454
Coefficients:
Estimate Std. Error t value
yd.lag 0.02559 0.01793 1.427
yd.diff.lag1 0.45630 0.14668 3.111
yd.diff.lag2 0.06223 0.15879 0.392
yd.diff.lag3 -0.02445 0.15965 -0.153
yd.diff.lag4 -0.10768 0.15110 -0.713
Pr(>|t|)
yd.lag 0.15962
yd.diff.lag1 0.00303 **
yd.diff.lag2 0.69672
yd.diff.lag3 0.87886
yd.diff.lag4 0.47925
---
Signif. codes:
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 16.49 on 52 degrees of freedom
Multiple R-squared: 0.3825, Adjusted R-squared: 0.3231
F-statistic: 6.442 on 5 and 52 DF, p-value: 9.956e-05
Value of test-statistic is: 1.4268
Critical values of DF-GLS are:
1pct 5pct 10pct
critical values -2.6 -1.95 -1.62
> sjd <- denmark[, c("LRM", "LRY", "IBO", "IDE")]
> sjd.vecm <- ca.jo(sjd, ecdet = "const", type="eigen", K=2, spec="longrun",
+ season=4)
> HD1 <- matrix(c(1, -1, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 1), c(5,3))
> DA <- matrix(c(1,0,0,0, 0, 1, 0, 0, 0, 0, 0, 1), c(4,3))
> summary(ablrtest(sjd.vecm, H=HD1, A=DA, r=1))
######################
# Johansen-Procedure #
######################Estimation and testing under linear restrictions on alpha and beta
The VECM has been estimated subject to:
beta=H*phi and/or alpha=A*psi
[,1] [,2] [,3]
[1,] 1 0 0
[2,] -1 0 0
[3,] 0 1 0
[4,] 0 -1 0
[5,] 0 0 1
[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 0
[4,] 0 0 1
Eigenvalues of restricted VAR (lambda):
[1] 0.4100 0.0090 0.0053
The value of the likelihood ratio test statistic:
2.13 distributed as chi square with 2 df.
The p-value of the test statistic is: 0.35
Eigenvectors, normalised to first column
of the restricted VAR:
[,1]
[1,] 1.0000
[2,] -1.0000
[3,] 5.9508
[4,] -5.9508
[5,] -6.2162
Weights W of the restricted VAR:
[,1]
[1,] -0.1519
[2,] 0.0992
[3,] 0.0000
[4,] 0.0288
0 Comments