Deep learning is a subject of importance right from image detection to speech recognition and AI-related activity
> library(neuralnet)> library(ISLR)
Error in library(ISLR) : there is no package called ‘ISLR’
> install.packages("ISLR")
> library(ISLR)
Warning message:
package ‘ISLR’ was built under R version 3.5.2
> library(ISLR)
> data = College
Image detection
> View(data)>
> max_data <- apply(data[,2:18], 2, max)
> min_data <- apply(data[,2:18], 2, min)
> data_scaled <- scale(data[,2:18],center = min_data, scale = max_data - min_data)
>
> Private = as.numeric(College$Private)-1
> data_scaled = cbind(Private,data_scaled)
> index = sample(1:nrow(data),round(0.70*nrow(data)))
>
> train_data <- as.data.frame(data_scaled[index,])
> test_data <- as.data.frame(data_scaled[-index,])
>
> n = names(train_data)
>
> f <- as.formula(paste("Private ~", paste(n[!n %in% "Private"], collapse = " + ")))
>
> deep_net = neuralnet(f,data=train_data,hidden=c(5,3),linear.output=F)
> plot(deep_net)
> predicted_data <- compute(deep_net,test_data[,2:18])
>
> print(head(predicted_data$net.result))
[,1]
Alaska Pacific University 1
Albertson College 1
Allegheny College 1
Amherst College 1
Andrews University 1
Antioch University 1
> predicted_data$net.result <- sapply(predicted_data$net.result,round,digits=0)
> table(test_data$Private,predicted_data$net.result)
0 1
0 54 10
1 10 159
> install.packages("h2o")
Installing package into ‘C:/Users/ADMIN/Documents/R/win-library/3.5’
(as ‘lib’ is unspecified)
trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.5/h2o_3.22.1.1.zip'
Content type 'application/zip' length 122132920 bytes (116.5 MB)
downloaded 116.5 MB
package ‘h2o’ successfully unpacked and MD5 sums checked
The downloaded binary packages are in
C:\Users\ADMIN\AppData\Local\Temp\Rtmpof4ihy\downloaded_packages
> library(h2o)
----------------------------------------------------------------------
Your next step is to start H2O:
> h2o.init()
For H2O package documentation, ask for help:
> ??h2o
After starting H2O, you can use the Web UI at http://localhost:54321
For more information visit http://docs.h2o.ai
----------------------------------------------------------------------
Attaching package: ‘h2o’
The following objects are masked from ‘package:stats’:
cor, sd, var
The following objects are masked from ‘package:base’:
%*%, %in%, &&, ||, apply, as.factor,
as.numeric, colnames, colnames<-, ifelse,
is.character, is.factor, is.numeric, log,
log10, log1p, log2, round, signif, trunc
Warning message:
package ‘h2o’ was built under R version 3.5.2
> library(h2o)
> c1=h2o.init(max_mem_size = "2G",
+ nthreads = 2,
+ ip = "localhost",
+ port = 54321)
H2O is not running yet, starting it now...
Note: In case of errors look at the following log files:
C:\Users\ADMIN\AppData\Local\Temp\Rtmpof4ihy/h2o_ADMIN_started_from_r.out
C:\Users\ADMIN\AppData\Local\Temp\Rtmpof4ihy/h2o_ADMIN_started_from_r.err
java version "1.8.0_151"
Java(TM) SE Runtime Environment (build 1.8.0_151-b12)
Java HotSpot(TM) 64-Bit Server VM (build 25.151-b12, mixed mode)
Starting H2O JVM and connecting: .. Connection successful!
R is connected to the H2O cluster:
H2O cluster uptime: 8 seconds 865 milliseconds
H2O cluster timezone: Asia/Kolkata
H2O data parsing timezone: UTC
H2O cluster version: 3.22.1.1
H2O cluster version age: 2 months and 1 day
H2O cluster name: H2O_started_from_R_ADMIN_unb933
H2O cluster total nodes: 1
H2O cluster total memory: 1.78 GB
H2O cluster total cores: 2
H2O cluster allowed cores: 2
H2O cluster healthy: TRUE
H2O Connection ip: localhost
H2O Connection port: 54321
H2O Connection proxy: NA
H2O Internal Security: FALSE
H2O API Extensions: Algos, AutoML, Core V3, Core V4
R Version: R version 3.5.0 (2018-04-23)
> data(iris)
> summary(iris)
Sepal.Length Sepal.Width Petal.Length
Min. :4.300000 Min. :2.000000 Min. :1.000
1st Qu.:5.100000 1st Qu.:2.800000 1st Qu.:1.600
Median :5.800000 Median :3.000000 Median :4.350
Mean :5.843333 Mean :3.057333 Mean :3.758
3rd Qu.:6.400000 3rd Qu.:3.300000 3rd Qu.:5.100
Max. :7.900000 Max. :4.400000 Max. :6.900
Petal.Width Species
Min. :0.100000 setosa :50
1st Qu.:0.300000 versicolor:50
Median :1.300000 virginica :50
Mean :1.199333
3rd Qu.:1.800000
Max. :2.500000
> iris_d1 <- h2o.deeplearning(1:4,5,
+ as.h2o(iris),hidden=c(5,5),
+ export_weights_and_biases=T)
|==============================================| 100%
|==============================================| 100%
>
> iris_d1
Model Details:
==============
H2OMultinomialModel: deeplearning
Model ID: DeepLearning_model_R_1551499097956_1
Status of Neuron Layers: predicting Species, 3-class classification, multinomial distribution, CrossEntropy loss, 73 weights/biases, 4.6 KB, 1,500 training samples, mini-batch size 1
layer units type dropout l1 l2
1 1 4 Input 0.00 % NA NA
2 2 5 Rectifier 0.00 % 0.000000 0.000000
3 3 5 Rectifier 0.00 % 0.000000 0.000000
4 4 3 Softmax NA 0.000000 0.000000
mean_rate rate_rms momentum mean_weight weight_rms
1 NA NA NA NA NA
2 0.003087 0.003858 0.000000 0.055145 0.563931
3 0.001105 0.000828 0.000000 0.148419 0.333557
4 0.001324 0.000642 0.000000 -0.028787 1.654691
mean_bias bias_rms
1 NA NA
2 0.852716 0.826724
3 1.062501 0.273368
4 0.001277 0.103763
H2OMultinomialMetrics: deeplearning
** Reported on training data. **
** Metrics reported on full training frame **
Training Set Metrics:
=====================
Extract training frame with `h2o.getFrame("iris_sid_a830_1")`
MSE: (Extract with `h2o.mse`) 0.06891309264
RMSE: (Extract with `h2o.rmse`) 0.2625130333
Logloss: (Extract with `h2o.logloss`) 0.2637877632
Mean Per-Class Error: 0.07333333333
Confusion Matrix: Extract with `h2o.confusionMatrix(<model>,train = TRUE)`)
=========================================================================
Confusion Matrix: Row labels: Actual class; Column labels: Predicted class
setosa versicolor virginica Error
setosa 50 0 0 0.0000
versicolor 7 40 3 0.2000
virginica 0 1 49 0.0200
Totals 57 41 52 0.0733
Rate
setosa = 0 / 50
versicolor = 10 / 50
virginica = 1 / 50
Totals = 11 / 150
Hit Ratio Table: Extract with `h2o.hit_ratio_table(<model>,train = TRUE)`
=======================================================================
Top-3 Hit Ratios:
k hit_ratio
1 1 0.926667
2 2 1.000000
3 3 1.000000
> plot(iris_d1)
>
> h2o.weights(iris_d1, matrix_id=1)
Sepal.Length Sepal.Width Petal.Length
1 0.2409946620 0.35679787397 -1.1170697212
2 0.6530707479 0.67512649298 0.2999281287
3 -0.1507256031 0.44363185763 0.5350508094
4 0.6421241760 0.03761408478 -0.1086364165
5 -0.2883346975 -0.27492222190 0.1764629483
Petal.Width
1 -1.4844481945
2 0.2284315377
3 0.7389914393
4 0.0453807041
5 -0.5465673208
[5 rows x 4 columns]
> h2o.weights(iris_d1, matrix_id=2)
C1 C2 C3
1 -0.2234841734 -0.01124510914 0.43649563193
2 -0.1895816028 0.21325439215 0.79128360748
3 -0.3035679460 -0.55753493309 0.48393419385
4 0.1758618206 -0.35445415974 0.36051633954
5 0.3964880109 0.23581361771 0.04750946537
C4 C5
1 0.58218020201 0.02807313576
2 0.08547680080 -0.19191685319
3 0.45826247334 0.19889642298
4 0.08671515435 0.68862718344
5 0.20328296721 0.06957834214
[5 rows x 5 columns]
> h2o.weights(iris_d1, matrix_id=3)
C1 C2 C3 C4
1 -0.6639142036 -2.032027721 -2.748629332 0.7574009895
2 -0.6556437612 -0.368837446 -1.755167603 0.5674321651
3 2.5461874008 -1.720250487 2.794062376 -1.1157760620
C5
1 1.7997418642
2 1.4643006325
3 0.6993095279
[3 rows x 5 columns]
> h2o.biases(iris_d1, vector_id=1)
C1
1 2.4911530990
2 0.6355656164
3 0.4266453373
4 0.3115003118
5 0.3987136025
[5 rows x 1 column]
> h2o.biases(iris_d1, vector_id=2)
C1
1 0.7540707757
2 1.1464952188
3 0.7208821239
4 1.2750280645
5 1.4160310664
[5 rows x 1 column]
> h2o.biases(iris_d1, vector_id=3)
C1
1 0.09313390534
2 0.05446989759
3 -0.14377270651
[3 rows x 1 column]
>
> plot(as.data.frame(h2o.weights(iris_d1, matrix_id=1))[,1])
5 Comments
Present day innovation has prepared for another modern age, with man-made reasoning (AI) and AI among the main thrusts behind development. machine learning course in pune
ReplyDeleteGreat Article
ReplyDeletefinal year projects on machine learning
Final Year Project Centers in Chennai
JavaScript Training in Chennai
JavaScript Training in Chennai
A beaming piece of writing can really enlarge your frame of mind. I wish to read much more articles from you.
ReplyDeleteData Science training in Mumbai
Data Science course in Mumbai
SAP training in Mumbai
Machine Learning Training in Hyderabad at AI Patasala will allow you to maximize the subject knowledge of your candidates. Aspirants will be able to get a certification in Machine Learning at AI Patasala, which will allow them to create the best career path.
ReplyDeleteMachine Learning Certification in Hyderabad
Get the best Data Science online course at the comfort of your home. Flexible timings, Best industry trainers, and meticulously crafted curriculum. Avail now!!!!
ReplyDeletedata science online training in hyderabad