Generate the two time series length 999
Fixed random seeds
set.seed(20140625) Define length of simulation
> N <- 999
Simulate normal random walk
> x <- cumsum(rnorm(N))
Set an initial parameter
> gamma <- 0.7
Get cointegrating series
> y <- gamma * x + rnorm(N)
plot the two series
> plot(x, type='l')
> lines(y,col="green")
summary(ur.df(x,type="none"))
###############################################
# Augmented Dickey-Fuller Test Unit Root Test #
###############################################Test regression none
Call:
lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
Residuals:
Min 1Q Median 3Q Max
-2.9293 -0.6857 -0.0430 0.6568 3.0650
Coefficients:
Estimate Std. Error t value
z.lag.1 -0.002151 0.002995 -0.718
z.diff.lag 0.015978 0.031770 0.503
Pr(>|t|)
z.lag.1 0.473
z.diff.lag 0.615
Residual standard error: 0.9896 on 995 degrees of freedom
Multiple R-squared: 0.0007246, Adjusted R-squared: -0.001284
F-statistic: 0.3608 on 2 and 995 DF, p-value: 0.6972
Value of test-statistic is: -0.7182
Critical values for test statistics:
1pct 5pct 10pct
tau1 -2.58 -1.95 -1.62
summary(ur.df(y,type="none"))
###############################################
# Augmented Dickey-Fuller Test Unit Root Test #
###############################################
Test regression none
Call:
lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
Residuals:
Min 1Q Median 3Q Max
-4.9951 -1.0130 0.0000 0.9533 4.2422
Coefficients:
Estimate Std. Error t value
z.lag.1 -0.010684 0.006218 -1.718
z.diff.lag -0.391398 0.029214 -13.398
Pr(>|t|)
z.lag.1 0.0861 .
z.diff.lag <2e-16 ***
---
Signif. codes:
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’
0.1 ‘ ’ 1
Residual standard error: 1.448 on 995 degrees of freedom
Multiple R-squared: 0.1606, Adjusted R-squared: 0.1589
F-statistic: 95.18 on 2 and 995 DF, p-value: < 2.2e-16
Value of test-statistic is: -1.7182
Critical values for test statistics:
1pct 5pct 10pct
tau1 -2.58 -1.95 -1.62
The test statistics is larger than the critical value at the significance level.so
we can't reject the null hypothesis.
Now take a linear combination of two series
> z = y - gamma*x
> plot(z,type='l')


0 Comments