How to find Higher-Order Moments stock data science
"AAPL" "CSCO"tail(stkdata)
AAPL.Adjusted CSCO.Adjusted
2020-01-16 315.24 49.05
2020-01-17 318.73 49.02
2020-01-21 316.57 48.80
2020-01-22 317.70 49.07
2020-01-23 319.23 49.00
2020-01-24 318.31 48.85
> aapl=AAPL[’2007−01−03::2020−01−17’]
Error: unexpected input in "aapl=AAPL[’"
>
> aapl=AAPL['2007−01−03::2020−01−17']
> csco =CSCO['2007−01−03::2020−01−17']
> aapl = as.matrix(AAPL[ , 6 ])
> csco = as.matrix(CSCO[ , 6 ])
> stkdata = cbind (aapl,csco)
>
> dim(stkdata)
[1] 3288 2
>
> n = length(stkdata[,1])
> n
[1] 3288
> rets = log( stkdata [ 2 : n , ]/stkdata[1:( n−1) ,])
> MEAN
> colMeans(rets)AAPL.Adjusted CSCO.Adjusted
0.0010403556 0.0002501597
> cv = cov ( rets )
>
> print( cv , 2 )
AAPL.Adjusted CSCO.Adjusted
AAPL.Adjusted 0.00039 0.00018
CSCO.Adjusted 0.00018 0.00033
>
> cr = cor( rets )
>
> print ( cr,2 )
AAPL.Adjusted CSCO.Adjusted
AAPL.Adjusted 1.00 0.49
CSCO.Adjusted 0.49 1.00
x = matrix(rnorm ( 4 ) , 2 , 2 )
>
> x
[,1] [,2]
[1,] 0.512371 1.176699
[2,] -2.124443 0.676594
> print( t( x ) , 2 )
[,1] [,2]
[1,] 0.51 -2.12
[2,] 1.18 0.68
> print ( t( x ) %*% x , 2 )
[,1] [,2]
[1,] 4.78 -0.83
[2,] -0.83 1.84
>
> print ( x %*% t ( x ) , 2 )
[,1] [,2]
[1,] 1.65 -0.29
[2,] -0.29 4.97
> cv_inv = solve( cv )
>
> print ( cv_inv , 2 )
AAPL.Adjusted CSCO.Adjusted
AAPL.Adjusted 3411 -1828
CSCO.Adjusted -1828 4039
>
> print ( cv_inv %*% cv , 2 )
AAPL.Adjusted CSCO.Adjusted
AAPL.Adjusted 1 -1.1e-16
CSCO.Adjusted 0 1.0e+00
> > library("corpcor", lib.loc="~/R/win-library/3.6")
> is.positive.definite( cv )
[1] TRUE
> is.positive.definite(x)
[1] FALSE
> is.positive.definite( x %*% t( x ))
[1] TRUE
Stock data in place, and we can compute daily
returns, and then convert those returns into annualized returns.
> rets_annual = rets*252
> print (c(mean( rets ) ,mean( rets_annual)))
[1] 0.0006452577 0.1626049311
Compute the daily and annualized standard deviation of returns
> r_sd = sd( rets )
>
> r_sd_annual = r_sd*sqrt ( 252 )
> print(r_sd_annual)
[1] 0.2999346
> print(c( r_sd, r_sd_annual))
[1] 0.0188941 0.2999346
>
> print(sd (rets*252))
[1] 4.761314
>
> print(sd (rets*252))/252
[1] 4.761314
[1] 0.0188941
> print( sd(rets*252))/sqrt(252 )
[1] 4.761314
[1] 0.2999346
The variance is easy as well.
> r_var = var( rets )
>
> r_var_annual = var ( rets )*252
> print ( c( r_var , r_var_annual ) )
[1] 0.0003869694 0.0001751147 0.0001751147
[4] 0.0003268013 0.0975162890 0.0441289039
[7] 0.0441289039 0.0823539370
Higher-Order Moments
Skewness means one tail is fatter than the other (asymmetry). Fatter right (left) tail implies positive (negative) skewness.
> skewness ( rets )
AAPL.Adjusted CSCO.Adjusted
-0.4691675 -0.5079582
Kurtosis means both tails are fatter than with a normal
distribution.
> kurtosis (rets)
AAPL.Adjusted CSCO.Adjusted
10.22829 14.64755
Example-For the normal distribution, skewness is zero, and kurtosis is 3. Kurtosis
minus three is denoted “excess kurtosis”
> skewness(rnorm(1000000))
[1] -0.0003906446
>
> kurtosis(rnorm (1000000))
[1] 3.007031
Using properties of the lognormal distribution, the conditional mean of the stock price becomes E[S(t + h)|S(t)] = S(t) · e^µh
Annualized volatility σ
> h = 1/252
> sigma = sd( rets)/sqrt(h)
> sigma
[1] 0.2999346
The parameter µ is also easily estimated as
> mu = mean(rets)/h+0.5*sigma^2
>
> mu
[1] 0.2075853.
8 Comments
Awesome blog. I enjoyed reading your articles. This is truly a great read for me.
ReplyDeletedata analytics course
data science course
business analytics course
Dapatkan informasi lengkap seputar togel online seperti pengeluaran sgp, hasil sgp, togel singapore dan prediksi singapore disini : https://judionline.tv/togel/, jangan lupa ya !!!
ReplyDeletesitus judi online dengan permainan togel online dengan pasaran togel terbaik yaitu togel singapore disini : notogelsingapore
ReplyDeleteresult togel
ReplyDeleteAttend The Data Analyst Course From ExcelR. Practical Data Analyst Course Sessions With Assured Placement Support From Experienced Faculty. ExcelR Offers The Data Analyst Course.
ReplyDeleteData Analyst Course
Attend The Business Analytics Courses From ExcelR. Practical Business Analytics Courses Sessions With Assured Placement Support From Experienced Faculty. ExcelR Offers The Data Analytics Courses. data science course in Hyderabad
ReplyDeleteI've read this post and if I could I desire to suggest you some interesting things or suggestions. Perhaps you could write next articles referring to this article. I want to read more things about it!
ReplyDeleteData Science course
adana escort - adıyaman escort - afyon escort - aksaray escort - antalya escort - aydın escort - balıkesir escort - batman escort - bitlis escort - burdur escort - bursa escort - diyarbakır escort - edirne escort - erzurum escort - eskişehir escort - eskişehir escort - eskişehir escort - eskişehir escort - gaziantep escort - gebze escort - giresun escort - hatay escort - ısparta escort - karabük escort - kastamonu escort - kayseri escort - kilis escort - kocaeli escort - konya escort - kütahya escort - malatya escort - manisa escort - maraş escort - mardin escort - mersin escort - muğla escort - niğde escort - ordu escort - osmaniye escort - sakarya escort - samsun escort - siirt escort - sincan escort - tekirdağ escort - tokat escort - uşak escort - van escort - yalova escort - yozgat escort - urfa escort - zonguldak escort
ReplyDelete